
To learn more about Project Tin Can, visit http://www.adlnet.gov

Tin Can API (REST binding)

Revisions

Date Updates

2011-10-25 ● Corrected state API to use „registrationID‟ filter instead

of „registered‟ verb.

● Added caution to registration definition on the use of

unassigned registrations.

● clarified that the „since‟ parameter excludes the specified

date (up to but not including).

Definitions

Tin Can API (TCAPI): The API defined in this document, the product of “Project Tin

Can”. A simple, lightweight way for any permitted actor to store and retrieve extensible

learning records, learner and learning experience profiles, regardless of the platform used.

Learning Activity Provider (AP): Like a SCORM package, the software object that is

communicating with the LRS to record information about a learning experience.

Learning Activity (activity): Like a SCORM activity, a unit of instruction, experience,

or performance that is to be tracked.

Statement: A simple statement consisting of <Actor (learner)> <verb> <object>, with

<result>, in <context> to track an aspect of a learning experience. A set of several

statements may be used to track complete details about a learning experience.

Learning Record Store (LRS): A system that stores learning information. Currently,

most LRSs are Learning Management Systems (LMSs), however this document uses the

term LRS to be clear that a full LMS is not necessary to implement the TCAPI.

Learning Management System (LMS): Provides the tracking functionality of an LRS,

but provides additional administrative, and reporting functionality. In this document the

term will be used when talking about existing systems that implement learning standards.

Registration: If the LRS is an LMS, it likely has a concept of registration, an instance

of a learner signing up for a particular learning activity. The LMS may also close the

registration at some point when it considers the learning experience complete. For Tin

Can purposes, a registration may be applied more broadly; an LMS could assign a group

of students to a group of activities and track all related statements in one registration.

Note: an activity providers are cautioned against reporting registration other than when

assigned by an LRS. An LRS that assigns registrations is likely to reject statements

containing unassigned registration IDs.

State: Similar to SCORM suspend data, but allows storage of arbitrary key/document

pairs. The LRS does not have to retain state once the learning experience is considered

done (LRS has closed its “registration”).

Profile: Learners and activities can both have arbitrary key/document pairs of profile

data stored about them. This could be used for leaderboards, to note learner preferences,

learner strengths & weaknesses, etc.

Launch

Tin Can APs do not need to be launched from an LRS, however it is still an option. When

an LRS launches a Tin Can experience, it will provide the necessary information for

that experience to track back to the LRS (endpoint, learner information, credentials, and

optionally registration, activity ID, version, and platform). The format of the launch URL

will be as follows:

<AP URL>/?endpoint=<lrs

endpoint>&auth=<token>&actor=<learner>[®istration=<registration>]

[&activity_id=<activity

ID>&activity_version=<version>&activity_platform=<platform>]

Note that that some of the parameter values include reserved characters, and even other

URLS, and therefore must be URL encoded.

Example launch link (shown without URL encoding and with line breaks for readability):

http://example.scorm.com/TCActivityProvider/

?endpoint=http://example.scorm.com/lrs/
&auth=OjFjMGY4NTYxNzUwOGI4YWY0NjFkNzU5MWUxMzE1ZGQ1
&actor={ "name" : "Project Tin
Can", "mbox" : "mailto:tincan@scorm.com" }

®istration=760e3480-ba55-4991-94b0-01820dbd23a2

&activity_id=http://example.scorm.com/tincan/example/
simplestatement

Partial launch information may also be provided by an LRS in the form of a launch link,

http://example.scorm.com/TCActivityProvider/
http://example.scorm.com/lrs/
mailto:mailto:tincan@scorm.com
http://example.scorm.com/tincan/example/

which may consist of only endpoint information, or may include learner information but

not credentials. In this case, the AP would have to have been configured with or prompt

for the necessary information.

If no launch information is provided, then the AP must minimally be configured with the

LRS endpoint it should track to. The AP may also be configured with credentials from

the LRS, in which case credentials need not be obtained for each learner.

The process of getting launch information from an LRS to an AP in a manner other than

a launch link (URL) is not defined. Although it is a goal of the TCAPI to support out of

browser scenarios, this is supported by allowing the AP to pass information to a LRS

about learners and activities that have not been previously defined in the LRS. That

is, out of browser scenarios are supported by removing the requirement for the LRS to

launch the activity. Minimally, the AP must be configured with the LRS endpoint, and

usually will also need authentication credentials.

Objects

Statement

The statement is the core of the TCAPI. All learning events are stored as a statement: “I

did this”. Bolded properties are required.

Property Type Default Description

id UUID may be assigned by statement creator or LRS.

actor JSON/XML
object

 Learner or Team object the statement is about. “I”.
If not specified, LRS will infer based on

authentication.

verb String String. See table below.

inprogress Boolean false Should the LRS wait for further information about
this statement, is this statement just a mention of a

learning experience in progress, but not yet to be

submitted.

object Activity or person object that is the object of the
statement, “this”

result Result object, further details relevant to the
specified verb.

context JSON/XML
object

 Context that gives the statement more meaning.
Examples: Team actor is working with, altitude in a

flight simulator.

timestamp Timestamp of when what this statement describes
happened.

stored Timestamp of when this statement was recorded.
Set by LRS.

authority Actor who is asserting this statement is true.
Verified by LRS based on authentication, and set by

LRS if left blank.

Aside from the possible initial assignment of “ID” and “Authority” by the LRS, and

the assignment of “Stored” whenever a statement is passed from system to system,

statements are immutable.

Example of a simple statement:

{

"id" : "fd41c918-b88b-4b20-a0a5-a4c32391aaa0",
"actor" : {

"name" : "Project Tin Can",

"mbox" : "mailto:tincan@scorm.com"
},

"verb" : "created",

"object" : {
"id" : "http://example.scorm.com/tincan/example/

simplestatement",

"definition" : {
"name" : "simple statement",
"description" : "A simple Tin Can API

statement. Note that the LRS does not need to have any
prior information about the actor (learner), the verb, or
the activity/object."

}
}

}

Simplest possible statement:

{

"verb" : "created",

"object" : { "id" : "http://example.scorm.com/tincan/
example/simplestatement"}
}

Typical simple completion with score:

{

"actor" : {

"name" : "Example Learner",
"mbox" : "mailto:learner@example.scorm.com"

},

mailto:mailto:tincan@scorm.com
http://example.scorm.com/tincan/example/
http://example.scorm.com/tincan/
mailto:mailto:learner@example.scorm.com

"verb" : "attempted",
"object" : {

"id" : "http://example.scorm.com/tincan/example/

simpleCBT",
"definition" : {

"name" : "simple CBT course",

"description" : "A fictitious example CBT
course."

}

},
“result” : {

“score” : { “scaled” : .95},

“success” : true,
“completion” : true

}
}

Statement Verbs:

There are two major competing goals in choosing a set of defined verbs for use in

statements: provide sufficient verbs to clearly express any foreseeable learning event,

and to ensure that different verbs are not used to express the same concept. The first goal

suggests a large set of verbs, but a small set is better for the second goal.

The list of verbs below should go a long way towards meeting the first goal, while also

meeting the second. There is still a need for more verbs, which can be added once an

appropriate governance model is put in place.

The table below shows valid object types and results for use with defined verbs. The

results listed are valid, not required results for that verb – so a statement with the

verb “read” may report completion, but doesn‟t have to, and it should not report a score.

The attempt column indicates if a statement with the listed verb indicates the start of a

new attempt. In other words, if prior statements exist for this learner and object, does the

new statement represent a distinct interaction with that object (new attempt), or does it

add detail to existing statements (no new attempt)? No specific behavior is triggered by

attempt vs. non-attempt verbs, however clients should choose the appropriate verb type,

and reporting tools may use this information to logically group results.

The list below is sorted into groups of related verbs. Related verbs have similar

meanings, the same applicable object types, results, context, and attempt behavior, and

can be handled as a group for reporting purposes. The specific verb used should always

be displayed on reports except when aggregating statements.

Verb Object Types Results Attempt?

http://example.scorm.com/tincan/example/

experienced, read,
watched, witnessed,

studied, reviewed,

learned, attended, heard

Content (video,
book, article, blog),

Event

Completion Yes

attempted, performed,
played, simulated

Any Completion, Success,
Score, (interaction details)

Yes

completed,
passed,mastered, failed

Any Completion, Success,
Score, (interaction details)

Yes

answered question Completion, Success,
Score, interaction details

Yes

interacted, drove,
piloted, used

control, thing,
interaction

(interaction details) No

achieved Any activity Completion, Success,
Score, (interaction details)

No

participated Event No

mentored (by) Person Completion

commented Any Comment No

asked Any Question No

created, authored,
wrote, edited, blogged

Content (video,
book, article, blog)

Completion, Success,
Score

Yes

shared, posted Content (video,
book, article, blog)

 No

taught course, class,
session, lecture,

topic

Completion, Success,
Score

Yes

imported Any object No

Completed, passed, mastered, and failed are special in that they indicate a specific result

value. All statements using these verbs shall be read by an LRS as having completion

= true, and passed, mastered, and failed will have success set to true,true, or false

respectively. They are provided as a convenience to allow these common concepts to

be compactly and clearly expressed. It is OK to explicitly set these values as described

above in a statement with one of these verbs, or leave the results blank. A statement using

the completed, passed, or failed verb and containing contradictory results is invalid.

When queried, an LRS must expand statements using completed, passed, or failed to

include the appropriate results block as implied by the verb used.

The achieved verb is intended for scenarios where results are stored or adjusted

after the tracking of the initial attempt, such as when a student responds to an essay

question (attempted), and then later an instructor grades it (achieved). For example:

Instructor asserts that I achieved assessment with result “passed”. Graded was not

chosen because in the “I did this” model, using a graded verb we would be talking about

the instructor, not the student. If one does want to report about the instructor grading

something, “graded” may be used, as can any unlisted verb, but always keep in mind

that the actor is the subject of the statement, including any associated information such as

score. So if I make the statement: “I graded Ben‟s test with result: passed, 80%”, that

score information means I successfully graded the test, and someone assigned me a score

of 80% in doing so. It should not be taken to mean the score I assigned while grading.

That could be expressed: “Ben achieved test with result: passed, 80%” The important

point there is “I” has to be “Ben” in order to assign Ben a score.

Statements with the registered verb will usually be added by the LRS or an agent acting

on behalf of the LRS, and cause all prior statements on that activity (or it‟s children)/

actor combination to be considered obsolete. Obsolete statements will not be returned

by default when reading statements from the API, and should not be displayed on reports

unless specifically requested.

The imported verb exists as a way to get activity or actor definitions into an LRS, without

requiring a separate import API or misuse of another verb. Since activities or actors can

be used in statements without previously importing them, and an LRS is required to save

the information provided in such statements, it is possible to import an activity definition

just by using it in a statement.

Result

If the result of a statement is logically a simple string, eg: I commented “This question

is a little vague” on “question1”, then that string may be used as the result object.

Otherwise, the result object is as follows:

Property Description

score Score object (or not specified)

success true, false, or not specified

completion Completed, or not specified

response As in cmi.interactions.n.learner_response. Only valid if activity
is of type “Interaction”

<extension> Other properties as needed.

Context

Context information relevant to the current statement.

Property Description

registration UUID of the registration statement is associated with.

Instructor Instructor that the statement relates to, if not included as the actor
or object of the statement.

Team Team that this statement relates to, if not included as the actor or
object of the statement.

Activity A learning activity this statement is related to. For example, if I
am studying a textbook, for a test, the textbook is the activity the

statement is about, but the test is the context activity.

This activity could also be a session, like a section of a specific

course, or a particular run through a scenario. So the statement

could be about “Algebra I”, but in the context of “Section 1 of

Algebra I”.

This is particularly useful with the object of the statement is an

actor, not an activity. “I mentored Ben with context Algebra I”.

statement Another statement (either existing or new), which should be
considered as context for this statement. This could be used to

add context to a comment, or when grading.

<extension> Any other domain-specific context relevant to this statement.
For example, in a flight simulator altitude, airspeed, wind,

attitude, GPS coordinates might all be relevant.

Score

Property Description

Scaled cmi.score.scaled (recommended)

Raw cmi.score.raw

min cmi.score.min

max cmi.score.max

State

Property Description

id String, set by AP, unique within state scope (learner, activity)

updated Timestamp

contents Free form.

Note that in the REST binding, State is a document not an object. ID is stored in the

URL, updated is HTTP header information, and contents is the HTTP document itself.

Agent (learner or team)

These will be FOAF agent objects http://xmlns.com/foaf/spec/#term_Agent

A key design goal for the TCAPI is to enable an LRS to receive learning records about a

learner that has not yet been defined in the LRS, or from a LP that does not have access

http://xmlns.com/foaf/spec/#term_Agent

to the identifier used by the LRS for that learner. FOAF, or “Friend of a Friend” agent

objects provide some capabilities that will help in achieving those goals.

1. FOAF provides a vocabulary with a variety of options for uniquely defining an

agent (or person), such as email address, weblog address, or account on a system

(the LRS for example).
2. OWL (Web Ontology Language), which FOAF uses, provides a way to declare

what properties can be used to uniquely identify an entity, they have the “Inverse

Functional Property”. Using this information, it is possible to merge two different

sets of statements about the same entity, provided they have a match in one of

these properties. For example, email is an inverse functional property for Person,

if we have two sets of statements (FOAF objects) about someone who has the

email address person1@example.com then we know that those statements are

about the same person.

When defining a Learner, Team, or Agent, at least one field that has the Inverse

Functional Property (http://www.w3.org/wiki/InverseFunctionalProperty) must be

defined. Note that the “account” field in FOAF is not defined as having the Inverse

Functional Property, but in the context of the TCAPI it will be considered to have this

property.

The LRS should consider FOAF agent with matching fields having the inverse functional

property (such as email) to be the same agent. This equivalence should be applied both

when filtering statements based on agent, and when reporting. However, the LRS should

still be able to report on the original FOAF agent that was associated with any statement,

before applying any merge operation.

Activity

Property Description

id URI , may be a URL. If a URL, the URL should refer to the AP for
this activity, or a description or metadata for this activity. It should

not refer to something unrelated to the activity.

This URI is unique, any reference to it always refers to the same

activity, the AP must ensure this is true and the LRS may not

attempt to treat multiple reference to the same URI as references to

different activities.

revision String: Different minor revisions of an activity that is logically still
the same can share an ID and be differentiated by revision

platform String: activities meant to run on different platforms that are
logically still the same can share an ID and be differentiated by

platform

definition Metadata, See below

mailto:person1@example.com
http://www.w3.org/wiki/InverseFunctionalProperty

Activity Definition

name String, what the activity is called

description String, a description of the activity (question
text if a question)

type Course, Module, Meeting, Media,
Performance, Simulation, Assessment,

Interaction, Objective

children If this activity permanently has sub-
activities (questions within an assessment

for example), they may be listed here.

interaction_type As in CMI interactions, only valid
for “Question”

correct_responses As in CMI interactions, only valid
for “Question”

extensions Other properties as needed

Activity / Learner profile

Property Description

id String, set by AP, unique within activity/learner scope (learner,
activity)

updated Timestamp

contents Free form.

Note that in the REST binding, activity and learner profiles are documents not objects.

ID is stored in the URL, updated is HTTP header information, and contents is the HTTP

document itself.

Runtime Communication

The TCAPI consists of 4 sub-APIs: statement, state, learner, and activity profile. The

statement API can be used by itself to track learning records.

Security

API calls may be authenticated using HTTP Basic authentication, using one of the

following credentials:

● Username/password of a LRS user.
● Token in Username field, no password

○ Token received in launch information
○ Token received via OAuth negotiation with LRS

An LRS is free to accept unauthenticated API calls, but rejecting them is recommended.

Protection from tampering and eavesdropping can be achieved using transport layer

security.

Statements

Store (Statement)

POST http://example.com/TCAPI/Statements/

Stores a statement, or a set of statements. Returns: 200 OK, statement ID(s) (UUID).

Since the PUT method targets a specific statement ID, POST must be used rather than

PUT to save multiple statements, or to save one statement without first generating a

statement ID. An alternative for systems that generate a large amount of statements is to

provide the LRS side of the API on the AP, and have the LRS query that API for the list

of updated (or new) statements periodically. This will likely only be a realistic option for

systems that provide a lot of data to the LRS.

GET http://example.com/TCAPI/Statements/<StatementID>
Returns: 200 OK, statement

PUT http://example.com/TCAPI/Statements/<StatementID>
Returns: 204 No Content

Errors: 409 Conflict

Stores statement with the given ID. This MUST NOT modify an existing statement. If the

statement ID already exists, the receiving system SHOULD verify the received statement

matches the existing one and return 409 Conflict if they do not match.

GET http://example.com/TCAPI/Statements/

Returns: List of statements in reverse chronological order based on “stored” time, subject

to permissions and maximum list length

Parameters:

Parameter Type Default Description

verb String Filter, only return statements matching the
specified verb.

http://example.com/TCAPI/Statements/
http://example.com/TCAPI/Statements/
http://example.com/TCAPI/Statements/
http://example.com/TCAPI/Statements/

object Actor / Activity
Object (JSON/

XML)

 Filter, only return statements matching the
specified object (activity or actor).

Object is an activity: All populated

fields in the filter activity, out of the list:

{ID, platform, revision} must match

corresponding fields in statements to be

returned.

Object is an actor: same behavior as “actor”

filter, except match against object property

of statements.

registration UUID Filter, only return statements matching
the specified registration ID. Note that

although frequently a unique registration

ID will be used for one actor assigned to

one activity, this should not be assumed. If

only statements for a certain actor or activity

should be returned, those parameters should

also be specified.

descendants Boolean True When filtering on activities, consider
a statement a match if the object or

context:activity is the specified activity, or

one of its descendants.

actor Actor Object
(JSON/XML)

 Filter, only return statements about the
specified agent. Note: at minimum agent

objects where every property is identical

are considered identical. Additionally, if the

LRS can determine that two actor objects

refer to the same agent, they should be

treated as identical for filtering purposes. See

agent object definition for details.

since Timestamp only statements stored since the specified
timestamp (exclusive) are returned

until Timestamp only statements stored at or before the
specified timestamp are returned

limit Nonnegative
Integer

0 Maximum number of statements to return. 0
indicates return the maximum the server will

allow.

offset Nonnegative
Integer

0 Skip this many statements that would
otherwise be in the list before starting to

return statements.

authoritative Boolean True Only include statements that are asserted
by actors authorized to make this assertion

(according to the LRS), and are not

superseded by later statements.

sparse Boolean True If true, only include minimum information
necessary in actor and activity objects to

identify them, If false, return full activity and

actor objects.

Instructor Actor Object
(JSON/XML)

True Same behavior as “actor” filter, except
match against “context:instructor”.

Note: due to query string limits, this method may be called using POST and form fields

if necessary. The LRS will differentiate a POST to add a statement or to list statements

based on the parameters passed.

State

PUT | GET | DELETE http://example.com/TCAPI/activities/<activity ID>/state/

<actor>/<State ID>[?registration=<registration>]

Stores, fetches, or deletes the specified state document in the context of the specified

activity, actor, and registration (if specified). Actor may be an individual or a team.

DELETE http://example.com/TCAPI/activities/<activity ID>/state/<actor>[?

registration=<registration>]

Deletes all state data for this context (activity + actor [+ registration if specified]).

GET http://example.com/TCAPI/activities/<activity ID>/state/<actor>[?

since=<timestamp>][®istration=<registration>]

Fetches IDs of all state data for this context (activity + actor [+ registration if specified]).

If “since” parameter is specified, this is limited to entries that have been stored or updated

since the specified timestamp (exclusive).

Generally, this is a scratch area for activity providers that do not have their own internal

storage, or need to persist state across devices.

Activity Profile

PUT | GET | DELETE http://example.com/TCAPI/activities/<activity ID>/profile/

<profile object key>

Saves/retrieves/deletes the specified profile document in the context of the specified

activity

GET http://example.com/TCAPI/activities/<activity ID>/profile[?

since=<timestamp>]

Loads IDs of all profile entries for an activity. If “since” parameter is specified, this

is limited to entries that have been stored or updated since the specified timestamp

(exclusive).

GET http://example.com/TCAPI/activities/<activity ID>

Loads complete activity objects that have the specified ID. This includes populated child

activity objects, but only ID information for the parent activity (if applicable).

Parameter Type Default Description

Revision String If specified, only include activities of the specified
revision

Platform String If specified, only include activities for the specified
platform

Actor Profile

PUT | GET | DELETE http://example.com/TCAPI/actors/<actor>/profile/<profile

object key>

Saves/retrieves/deletes the specified profile document in the context of the specified

learner (learner may be an individual or a team)

GET http://example.com/TCAPI/actors/<actor>/profile[?since=<timestamp>]

Loads IDs of all profile entries for an actor. If “since” parameter is specified, this

is limited to entries that have been stored or updated since the specified timestamp

(exclusive).

GET http://example.com/TCAPI/actors/<actor>

Loads full actor object for the specified actor. Even though an actor object is specified

in the get call, the LRS may have more information about that actor that can be returned.

For example, the actor object passed in could include only an email address, but the LRS

could return an actor object populated with name, department, and role.

Problems

Registration: LMS concept, but may need to be included in launch information, tracking.

Solution: Registration ID (UUID) becomes part of the statement stream, may

be specified by clients when storing statements. If the LRS provides a launch link, it

would provide the registration to track against in that link, if the launch is based on a

registration. If the LRS provides a registration ID, then the AP must use it when reporting

statements, and should use it when querying statements unless specifically intending

to retrieve previous registration information as well. This method allows for multiple

simultaneous registrations.

Rejected Solution: “Registered for” verb causes all prior statements to be “non-

authoritative”, starts new registration. Only one registration at a time is valid. Clients

don‟t really have to know about registrations. This does not work because different

assignments may be made for both an activity and a child of that activity. In that case,

using the registered verb on the child activity would reset progress from both the

assignment of that particular activity, and its parent. Also, only one registration at a time

being valid is an unreasonable restriction due to this same sort of overlap, a registration

for an activity should not preclude a registration on another activity that has it as a child.

The concepts of “attempt” and “submitted” are similar. Furthermore, specifying some

verbs as signifying a new attempt, and others not limits verb choice and therefore

statement expressiveness. We should consider merging these concepts somehow. The

problem with doing that is that “submitted” would be associated with ending an attempt,

whereas the attempt vs. non-attempt verbs determine whether or not to start a new

attempt. Both seem to be needed, submitted when it is known whether or not more details

will be sent, and attempt vs non-attempt to determine whether a new statement is a

revision of an existing attempt (an instructor grading the attempt for example), or the start

of a new attempt.

Result: Determining “authoritative” results will be difficult unless each result field is

constrained to only be enabled on one verb. If two statements have different verbs, and

different results, particularly different partial results, how does that get summarized?

Could potentially be solved with a “scored” verb, “passed” verb, etc.

Statement visibility (privacy) is a concern. There is nothing in the API to prevent any

actor from viewing any statements written by any other actor, though an LRS may chose

to limit this. To avoid an interoperability mess, at minimum best practices on what actor

types (admin, instructor, etc) can view which statements should be established.

FOAF account is not defined as having the inverse functional property, however we

need a way to uniquely identify agents (people) based on their LRS account as an option.

Consider adding an extension property rather than changing the definition of FOAF

account.

Should the FOAF agent object have a type added so the LRS can differentiate between a

person and an agent? Does it matter?

Results/Score section should be updated to use CMI5

Possibilities

UUID of statement could be a hash of other statement fields (except store time). This

could potentially allow two systems to generate the same statement, with the same ID, if

describing the same event (at the same time).

Statements could be signed by the “Authority”. This would require canonicalization of

statements first.

Appendix A: Bookmarklet

TCAPI enables using an “I learned this” bookmarklet to self-report learning. The

following is an example of such a bookmarklet, and the statement that this bookmarklet

would send if used on the page: http://scorm.com/tincan.

The bookmarklet would be provided by the LRS to track to, for a specific user.

Therefore the LRS URL, authentication, and actor information is hard coded in

the bookmarklet. Note that since the authorization token must be included in the

bookmarklet, the LRS should provide a token with limited privileges, ideally only

enabling the storage of self-reported learning statements.

The UUID generation is only necessary since the PUT method is being used, if a

statement is POSTED without an ID the LRS will generate it.

In order to allow cross-domain reporting of statements, a browser that supports

the “Access-Control-Allow-Origin” and “Access-Control-Allow-Methods” headers must

be used, such as IE 8+, FF 3.5+, Safari 4+, Safari iOS Chrome, or Android browser.

Additionally the server must set the required headers.

var url = "http://localhost:8080/TCAPI/
Statements/"+_ruuid();

var auth = "Basic dGVzdDpwYXNzd29yZA=="; var statement =
{actor:{"mbox" :
"mailto:learner@example.scorm.com"},verb:"",object:{id:"",d

efinition:{}}};
var definition = statement.object.definition;

statement.verb='experienced';

statement.object.id = window.location.toString();
definition.title = document.title;

definition.type="Media";
definition.my_extension_activity_type="bookmarklet link";

var xhr = new XMLHttpRequest();

xhr.open("PUT", url, true);

xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Authorization", auth);

xhr.onreadystatechange = function() {

if(xhr.readyState == 4) {
alert(xhr.status + " : " + xhr.responseText);

}
};
xhr.send(JSON.stringify(statement));

/*!

http://scorm.com/tincan
http://localhost:8080/TCAPI/
mailto:mailto:learner@example.scorm.com

Modified from: Math.uuid.js (v1.4)
http://www.broofa.com
mailto:robert@broofa.com

Copyright (c) 2010 Robert Kieffer

Dual licensed under the MIT and GPL licenses.
*/

function _ruuid() {

return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/
[xy]/g, function(c) {

var r = Math.random()*16|0, v = c == 'x' ? r :

(r&0x3|0x8);
return v.toString(16);

});
}

Example statement using bookmarklet

Headers:

{ 'content-type': 'application/json; charset=UTF-8',

authorization: 'd515309a-044d-4af3-9559-c041e78eb446',
referer: 'http://scorm.com/tincan/',
'content-length': '265',

origin: 'http://scorm.com' }

Method/Path:

PUT : /TCAPI/Statements/ed1d064a-eba6-45ea-a3f6-

34cdf6e1dfd9

Body: {

"actor":{
"mbox":mailto:learner@example.scorm.com

},

"verb":"experienced",
"object":{

"id":"http://scorm.com/tincan/ ",

"definition":{
"name":"SCORM » Project Tin Can: SCORM

Communication Modernization",

"type":"Media",
"my_extension_activity_type":"bookmarklet

link"

}
}

http://www.broofa.com/
http://www.broofa.com/
http://scorm.com/tincan/
http://scorm.com/
mailto:learner@example.scorm.com
http://scorm.com/tincan/

}

